

Friday 17 June 2016 - Afternoon

A2 GCE MATHEMATICS (MEI)

4758/01 Differential Equations

QUESTION PAPER

Candidates answer on the Printed Answer Book.

OCR supplied materials:

- Printed Answer Book 4758/01
- MEI Examination Formulae and Tables (MF2)

Other materials required:

Scientific or graphical calculator

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Answer any three questions.
- Do not write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The acceleration due to gravity is denoted by $g \, \text{m s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use g = 9.8.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are advised that an answer may receive no marks unless you show sufficient detail
 of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72.
- The Printed Answer Book consists of **16** pages. The Question Paper consists of **4** pages. Any blank pages are indicated.

INSTRUCTION TO EXAMS OFFICER/INVIGILATOR

 Do not send this Question Paper for marking; it should be retained in the centre or recycled. Please contact OCR Copyright should you wish to re-use this document. 1 The differential equation

$$4\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 8\frac{\mathrm{d}x}{\mathrm{d}t} + 3x = f(t)$$

is to be solved.

Consider first the case where $f(t) = 4e^{0.5t}$.

- (i) Find the general solution for x. [7]
- (ii) Given that when t = 0, x = 6 and $\frac{dx}{dt} = -4$, find the particular solution for x.
- (iii) Given that x has a minimum value, find the value of t for which this minimum occurs. [4]

Now consider the case where $f(t) = 4e^{-0.5t}$.

- (iv) Given that when t = 0, x = 6 and $\frac{dx}{dt} = -4$, find the particular solution for x. [9]
- 2 (a) The differential equation

$$x\frac{\mathrm{d}y}{\mathrm{d}x} - 3y = x^5 \cos x$$

is to be solved.

- (i) Find the general solution for y in terms of x. [8]
- (ii) Find the particular solution for which y = 0 when $x = \frac{1}{2}\pi$.
- **(b)** Now consider the differential equation $\sec x \frac{dy}{dx} 3y^2 = 0$.
 - (i) Find the particular solution for which y = 1 when $x = \frac{1}{2}\pi$. [7]
 - (ii) Show that the maximum value of y is 1. [2]
- (c) Now consider the differential equation $\sec x \frac{dy}{dx} 3y^2 = x$, where y = 0 when x = 1.

This is to be solved numerically using Euler's method. The algorithm is given by

$$x_{r+1} = x_r + h,$$
 $y_{r+1} = y_r + hy'_r.$

Use a step length of 0.01 to estimate y when x = 1.02. [5]

© OCR 2016 4758/01 Jun16

- A parachutist of mass 90 kg falls vertically from a stationary helicopter. When he is x m below the helicopter, his velocity is v m s⁻¹. The forces acting on the parachutist are his weight and a resistive force of magnitude $0.36v^2$ N.
 - (i) Show that his motion can be modelled by the differential equation

$$v\frac{dv}{dx} = 9.8 - 0.004v^2.$$
 [2]

(ii) Solve this differential equation to show that

$$v^2 = 2450(1 - e^{-0.008x}).$$
 [6]

[2]

- (iii) Sketch the graph of v against x.
- (iv) Find how far the parachutist has fallen when his speed has reached 48 m s⁻¹. [2]

The parachutist opens his parachute when his speed is $48 \,\mathrm{m \, s}^{-1}$. The forces acting on him now are his weight and a resistive force of magnitude $72v \,\mathrm{N}$.

- (v) Find an expression for v in terms of t, where t is the time in seconds that has elapsed since the parachute was opened.[8]
- (vi) Find the distance that the parachutist falls during the first 5 seconds after his parachute has opened.

 [4]
- 4 The simultaneous differential equations

$$\frac{\mathrm{d}x}{\mathrm{d}t} = x - y + 3\cos t$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = 5x - y - 12\sin t$$

are to be solved for $t \ge 0$, where t denotes time.

- (i) Eliminate y to obtain a second order differential equation for x in terms of t. Hence find the general solution for x. [12]
- (ii) Find the corresponding general solution for *y*. [3]

When t = 0, y = 0 and $\frac{dy}{dt} = 5$.

- (iii) Find the particular solutions for x and y. [4]
- (iv) Find the time that elapses between the first two occasions on which x = y. [5]

END OF QUESTION PAPER

© OCR 2016 4758/01 Jun16

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

© OCR 2016 4758/01 Jun16

Friday 17 June 2016 – Afternoon

A2 GCE MATHEMATICS (MEI)

4758/01 Differential Equations

PRINTED ANSWER BOOK

Candidates answer on this Printed Answer Book.

OCR supplied materials:

- Question Paper 4758/01 (inserted)
- MEI Examination Formulae and Tables (MF2)

Other materials required:

Scientific or graphical calculator

Duration: 1 hour 30 minutes

Candidate forename				Candidate surname			
Centre number				Candidate nu	ımber		

INSTRUCTIONS TO CANDIDATES


These instructions are the same on the Printed Answer Book and the Question Paper.

- The Question Paper will be found inside the Printed Answer Book.
- Write your name, centre number and candidate number in the spaces provided on the Printed Answer Book. Please write clearly and in capital letters.
- Write your answer to each question in the space provided in the Printed Answer Book. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Answer any three questions.
- Do not write in the bar codes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The acceleration due to gravity is denoted by $g \, \text{m s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use g = 9.8.

INFORMATION FOR CANDIDATES

This information is the same on the Printed Answer Book and the Question Paper.

- The number of marks is given in brackets [] at the end of each question or part question on the Question Paper.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is 72.
- The Printed Answer Book consists of 16 pages. The Question Paper consists of 4 pages. Any blank pages are indicated.

4.40	
1 (i)	

1 (ii)	
1 (11)	
1 (iii)	

1 (iv)	
	(answer space continued on next page)

1 (iv)	(continued)

© OCR 2016 Turn over

2 (a)(i)	
2 (a)(ii)	

2 (b)(i)	

2 (b)(ii)	
2 (c)	

3 (i)	
3 (ii)	
	(answer space continued on next page)

3 (ii)	(continued)
3 (iii)	
3 (iv)	

3 (v)	

3 (vi)	

4 (i)	
	(answer space continued on next page)

4 (i)	(continued)
4 (ii)	

4 (iii)	

4 (iv)	

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

GCE

Mathematics (MEI)

Unit 4758: Differential Equations

Advanced GCE

Mark Scheme for June 2016

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2016

Annotations and abbreviations

Annotation in scoris	Meaning
✓ and X	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0 M1	Method mark awarded 0, 1
A0 A1	Accuracy mark awarded 0, 1
B0 B1	Independent mark awarded 0, 1
SC	Special case
^	Omission sign
MR	Misread
Highlighting	
Other abbreviations in	Magning
mark scheme	Meaning
E1	Mark for explaining
U1	Mark for correct units
G1	Mark for a correct feature on a graph
M1 dep*	Method mark dependent on a previous mark, indicated by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working

1. Subject-specific Marking Instructions for GCE Mathematics (MEI) Mechanics strand

a Annotations should be used whenever appropriate during your marking.

The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded.

For subsequent marking you must make it clear how you have arrived at the mark you have awarded.

An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct *solutions* leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly.

Correct but unfamiliar or unexpected methods are often signalled by a correct result following an *apparently* incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, award marks according to the spirit of the basic scheme; if you are in any doubt whatsoever (especially if several marks or candidates are involved) you should contact your Team Leader.

c The following types of marks are available.

М

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, eg by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Е

A given result is to be established or a result has to be explained. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, eg wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

- When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep *' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- The abbreviation ft implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, exactly what is acceptable will be detailed in the mark scheme rationale. If this is not the case please consult your Team Leader.
 - Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
- f Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question. (e.g. lengths will be assumed to be in metres unless in a particular question all the lengths are in km, when this would be assumed to be the unspecified unit.)

We are usually quite flexible about the accuracy to which the final answer is expressed and we do not penalise overspecification.

When a value is given in the paper

Only accept an answer correct to at least as many significant figures as the given value. This rule should be applied to each case.

When a value is not given in the paper

Accept any answer that agrees with the correct value to 2 s.f.

ft should be used so that only one mark is lost for each distinct error made in the accuracy to which working is done or an answer given. Refer cases to your Team Leader where the same type of error (e.g. errors due to premature approximation leading to error) has been made in different questions or parts of questions.

There are some mistakes that might be repeated throughout a paper. If a candidate makes such a mistake, (eg uses a calculator in wrong angle mode) then you will need to check the candidate's script for repetitions of the mistake and consult your Team Leader about what penalty should be given.

There is no penalty for using a wrong value for *g*. E marks will be lost except when results agree to the accuracy required in the question.

g Rules for replaced work

If a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests.

If there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others.

NB Follow these maths-specific instructions rather than those in the assessor handbook.

h For a *genuine* misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question.

Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are established by equivalent working.

'Fresh starts' will not affect an earlier decision about a misread.

Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

- i If a graphical calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.
- j If in any case the scheme operates with considerable unfairness consult your Team Leader.

1.	(i)	AE: $4m^2 + 8m + 3 = 0$	M1		
		$m = -1 \pm \frac{1}{2} = -\frac{1}{2}, -\frac{3}{2}$	A1		
		CF: $x = Ae^{-\frac{1}{2}t} + Be^{-\frac{3}{2}t}$	F1		
		$PI: \qquad x = ke^{\frac{1}{2}t}$	B1		
		$k = \frac{1}{2}$	M1 A1	Differentiate and substitute to find k	
		$x = Ae^{-\frac{1}{2}t} + Be^{-\frac{3}{2}t} + \frac{1}{2}e^{\frac{1}{2}t}$	F1 [7]	PI + CF with 2 arbitrary constants	
	(ii)	$t = 0, x = 6$ $6 = A + B + \frac{1}{2}$	M1	Use condition	
		$t = 0, x = 6$ $6 = A + B + \frac{1}{2}$ $t = 0, \frac{dx}{dt} = -4$ $A + 3B = \frac{17}{2}$	M1 M1	Differentiate and use condition Solve	
		$A = 4, B = \frac{3}{2}$ $x = 4e^{-\frac{1}{2}t} + \frac{3}{2}e^{-\frac{3}{2}t} + \frac{1}{2}e^{\frac{1}{2}t}$	A1 [4]		
	(iii)	Minimum when $-2e^{-\frac{1}{2}t} - \frac{9}{4}e^{-\frac{3}{2}t} + \frac{1}{4}e^{\frac{1}{2}t} = 0$	M1	Differentiate and equate to 0	
		$e^{2t} - 8e^t - 9 = 0$	M1	Multiply through by $e^{\frac{3}{2}t}$	
		$\left(e^t + 1\right)\left(e^t - 9\right) = 0$	M1	Solve	
		$t = \ln 9 = 2\ln 3$	A1 [4]	cao o.e (2.19722)	

	(iv)	CF: $x = Ce^{-\frac{1}{2}t} + De^{-\frac{3}{2}t}$			
			D1	FT from (i)	
		$PI: x = Qte^{-0.5t}$	B1		
		$\dot{x} = Q(1 - 0.5t)e^{-0.5t}$: $\ddot{x} = Q(-1 + 0.25te^{-0.5t})$	M1	Differentiate using product rule and substitute	
		4Q = 4	M1	Compare coefficients and solve	
		Q=1	A1		
		$x = te^{-0.5t} + Ce^{-\frac{1}{2}t} + De^{-\frac{3}{2}t}$	A1	cao	
		$\dot{x} = -\frac{1}{2}Ce^{-\frac{1}{2}t} - \frac{3}{2}De^{-\frac{3}{2}t} + e^{-0.5t} (1 - 0.5t)$	M1	Differentiate using product rule	
		t = 0, x = 6: $C + D = 6$	M1	Use condition correctly	
		$t = 0, \frac{dx}{dt} = -4: C + 3D = 10$	M1	Use condition correctly (independent of use of product rule) and solve	
		C=4, D=2			
		$x = te^{-0.5t} + 4e^{-\frac{1}{2}t} + 2e^{-\frac{3}{2}t}$	A1	cao	
			[9]		
2.	(a)(i)	Divide through by x	B1	Both sides	
		IF: $e^{\int -\frac{3}{x} dx}$	M1	Attempt to find integrating factor	
		$= e^{-3\ln x}$	M1	Integrate and simplify log term	
		$=x^{-3}$	A1		
		$\frac{\mathrm{d}}{\mathrm{d}x}\left(yx^{-3}\right) = x\cos x$	M1	Multiply both sides by IF and express LHS as differential o.e.	
		DVG.	3.61		
		$RHS = x\sin x + \cos x + c$	M1 A1	Integrate by parts Including + c	
		$y = x^3 \left(x \sin x + \cos x + c \right)$	F1	Divide through by their integrating factor	
		, w (wallin : v oon : e)	[8]		

(ii)	$y = 0 \text{ when } x = \frac{1}{2}\pi : 0 = \left(\frac{\pi}{2}\right)^3 \left(\frac{\pi}{2} + c\right)$	M1	Use condition	
	$c = -\frac{\pi}{2}: y = x^3 \left(x \sin x + \cos x - \frac{\pi}{2} \right)$	A1	cao	
(b)(i)	$\frac{dy}{y^2} = \frac{3dx}{\sec x}$ $-\frac{1}{y} = \int 3\cos x dx$ $= 3\sin x + c$ $y = 1 \text{ when } x = \frac{1}{2}\pi : c = -4$	[2] B1 M1 A1 A1 M1 M1	Separate the variables Attempt to integrate LHS Integral of RHS including + c Use condition Make y the subject	
	$y = \frac{1}{4 - 3\sin x}$	A1 [7]	cao Final answer	
(ii)	Max value when $\sin x = 1$ Max value = $1/(4-3) = 1$ AG	M1 E1 [2]	Correct statement for their solution to (b)(i) Or any other valid method e.g. differentiation, second derivative not required Correctly shown; 1/(4-3) must be seen SC2 for stating BOTH max value = 1 and min value = 1/7	
(c)	$\frac{dy}{dx} = (3y^2 + x)\cos x$ $x y y' hy'$ $1 0 0.5403023 0.005403023$ $1.01 0.005403023 0.5372259 0.005372259$ $1.02 0.010775282$ 0.0108	B1 M1 A1 A1	May be implied by correct values Use algorithm $y(1.01) = 0.005403$ Agreement to 3 sf $y'(1.01) = 0.5372259$ Agreement to 3 sf	
	0.0108	[5]	U.U11 or better	

3.	(i)	$90v\frac{\mathrm{d}v}{\mathrm{d}x} = 90g - 0.36v^2$	M1	Use N2L, 3 terms, allow sign errors, allow any form for accn, including a	
		$v \frac{dv}{dx} = 9.8 - 0.004v^2.$	E1 [2]		
	(ii)	$\frac{v\mathrm{d}v}{9.8 - 0.004v^2} = \mathrm{d}x$	M1*	Separate variables	
		$-\frac{1}{0.008}\ln\left 9.8 - 0.004v^2\right = x + A$	A1 A1	Integrate to obtain LHS RHS including constant on one side	
		Use $v = 0$, $x = 0$: $A = -\frac{1}{0.008} \ln 9.8$ $v^2 = 2450 (1 - e^{-0.008x})$	M1dep*	Use condition	
		$v^2 = 2450 \left(1 - e^{-0.008x} \right)$	M1dep* E1 [6]	Rearrange	
	(iii)	Increasing graph through $(0, 0)$ Asymptote $v = \sqrt{2450}$	B1 B1 [2]	Allow 49.5	
	(iv)	353 m	M1A1 [2]	Accept 2.s.f.	
	(v)	$90\frac{\mathrm{d}v}{\mathrm{d}t} = 90g - 72v$	M1	Use N2L, 3 terms, allow sign errors	
		$\frac{\mathrm{d}v}{\mathrm{d}t} = g - 0.8v$	A1		
		$\frac{dv}{9.8 - 0.8v} = dt$ $-\frac{1}{0.8} \ln 9.8 - 0.8v = t + B$	M1	Separate variables	
		$\left -\frac{1}{0.8} \ln 9.8 - 0.8v = t + B \right $	A1	Integrate to obtain LHS	
			A1	RHS, including constant on one side	

Use $t = 0$, $v = 48$: $B = -\frac{1}{0.8} \ln 28.6$	M1	Use condition	
$v = 12.25 + 35.75e^{-0.8t}$	M1	Rearrange	
, 12,20	A1	cao	
	[8]		
	M1	Use N2L, 3 terms, allow sign errors	
	A1		
	B1		
$\frac{\mathrm{d}}{\mathrm{d}t}\left(v\mathrm{e}^{0.8t}\right) = g\mathrm{e}^{0.8t}$	M1	Multiply both sides by IF and express LHS as differential o.e.	
$ve^{0.8t} = 12.25e^{0.8t} + A$	A1		
	M1	Rearrange	
Use $t = 0$, $v = 48$: $A = \frac{143}{4} = 35.75$	M1	Use condition	
$v = 12.25 + 35.75e^{-0.8t}$	A1	cao	
Alternative method 2:	رام		
$90\frac{\mathrm{d}v}{\mathrm{d}t} = 90g - 72v$	M1	Use N2L, 3 terms, allow sign errors	
CF: $A e^{-0.8t}$	IVITAT		
$PI \cdot v = 12.25$	M1		
	A1		
33. , 13. 12.23	M1	Use condition	
Use $t = 0$, $v = 48$: $A = 35.75$	A1	Coo Condition	
$v = 12.25 + 35.75e^{-0.8t}$	[8]		
	Alternative method 1: $90 \frac{dv}{dt} = 90g - 72v$ $\frac{dv}{dt} = g - 0.8v$ Integrating factor: $e^{0.8t}$ $\frac{d}{dt}(ve^{0.8t}) = ge^{0.8t}$ $ve^{0.8t} = 12.25e^{0.8t} + A$ $v = 12.25 + Ae^{-0.8t}$ Use $t = 0$, $v = 48$: $A = \frac{143}{4} = 35.75$ $v = 12.25 + 35.75e^{-0.8t}$ Alternative method 2: $90 \frac{dv}{dt} = 90g - 72v$ $\frac{dv}{dt} = g - 0.8v$ CF: $A e^{-0.8t}$ PI: $v = 12.25$ GS: $v = Ae^{-0.8t} + 12.25$	Alternative method 1: $90 \frac{dv}{dt} = 90g - 72v$ M1 $\frac{dv}{dt} = g - 0.8v$ Integrating factor: $e^{0.8t}$ $v = 12.25 + Ae^{-0.8t}$ Use $t = 0$, $v = 48$: $A = 35.75$ Use $t = 0$, $v = 48$: $A = 35.75$ $v = 12.25$ $v = 48$: $A = 35.75$ M1 M1 M2 M1 M1 M1 M1 M1 A1 [8]	M1 Rearrange M2 Rearrange M3 Rearrange M4 Rearrange M5 M6 Rearrange M6 M7 M7 M8 M8 M8 M8 M8 M8

(vi)	$x = 12.25t + \frac{35.75}{-0.8}e^{-0.8t} + D$	M1	Integrate	
		A1	cao	
	Use $t = 0$, $x = 0$: $D = \frac{35.75}{0.8}$	M1	Use condition	
	When $t = 5$, distance = 105 m	A1 [4]	cao	

Q	uestio	on Answer	Marks	Guidance
4.	(i)	$\ddot{x} = \dot{x} - \dot{y} - 3\sin t$	M1	Differentiate
		$\ddot{x} = \dot{x} - (5x - y - 12\sin t) - 3\sin t$	M1	Substitute for \dot{y}
		$y = x + 3\cos t - \dot{x}$	M1	Substitute for <i>y</i>
		$\ddot{x} + 4x = 9\sin t + 3\cos t$	A1	oe
		AE $m^2 + 4 = 0$	M1	
		$m = \pm 2j$	A1	
		$CF x = A\cos 2t + B\sin 2t$	F1	
		$PI x = P\sin t + Q\cos t$	B1	
		$\dot{x} = P\cos t - Q\sin t \ddot{x} = -P\sin t - Q\cos t$	M1	Differentiate twice and substitute
		3P = 9 3Q = 3	M1	Equate coefficients and solve
		P = 3, Q = 1	M1	
		$x = A\cos 2t + B\sin 2t + 3\sin t + \cos t$	A1	cao
			[12]	
	(ii)	$\dot{x} = -2A\sin 2t + 2B\cos 2t + 3\cos t - \sin t$	M1	Differentiate x
	(11)	Substitute x and \dot{x} in $y = x + 3\cos t - \sin t$	M1	
		-		
		$y = (A - 2B)\cos 2t + (2A + B)\sin 2t + 4\sin t + \cos t$	A1	
			[3]	

Q	Question Answer		Marks	Guidance	
	(iii)	t = 0, y = 0: A - 2B + 1 = 0	M1	Use condition	
		t = 0, y = 0: $A - 2B + 1 = 0t = 0, \frac{dy}{dt} = 5: 5 = 5A + 5 - (A - 2B) - 1$	M1	Use condition	
		Solve to give $A = 0, B = \frac{1}{2}$			
		$x = \frac{1}{2}\sin 2t + 3\sin t + \cos t$	A1		
		$x = \frac{1}{2}\sin 2t + 3\sin t + \cos t$ $y = -\cos 2t + \frac{1}{2}\sin 2t + 4\sin t + \cos t$	A1		
			[4]		
	(iv)	$\cos 2t = \sin t$	M1 A1	Equate their expressions for x and y cao	
		$2\sin^2 t + \sin t - 1 = 0$: $\sin t = \frac{1}{2}$ $\sin t = -1$	M1	Use double angle formula and attempt to solve quadratic equation	
		$t = \frac{\pi}{6} \text{or} \frac{5\pi}{6}$	A1	One correct value	
		$\frac{2\pi}{3}$	A1	cao	
		3	[5]		

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

4758 Differential Equations (Written Examination)

General Comments:

Candidates performed well on this paper and the majority of the responses were of a high standard. The level of accuracy displayed by most candidates was commendable. The methods required to solve the second order differential equations in Questions 1 and 4 were known by almost all candidates and these two questions were attempted by the majority of the candidates. Question 3 was the least popular question. Very few candidates attempted more than three questions.

Comments on Individual Questions:

Question No. 1

Second order linear differential equations

- (i) All candidates were familiar with the method of solution required in this part and there were very few arithmetical errors.
- (ii) The majority of the candidates applied the initial conditions accurately and scored full marks.
- (iii) Almost all candidates differentiated their solution from part (ii) and equated their derivative to zero. The resulting equation involved exponential terms and it was pleasing to see that most candidates knew how to solve this equation.
- (iv) Most candidates recognised the form of the particular integral that was required to solve this second differential equation and worked accurately to find the particular solution. A minority of the candidates did not use the product rule when differentiating the correct particular integral.

Question No. 2

First order differential equations

- (a)(i) Almost all candidates recognised that the given differential equation required the application of the integrating factor method and most began correctly by dividing through by x, the coefficient of $\frac{dy}{dx}$. Most candidates found the correct integrating factor and worked through accurately to find the general solution.
- (ii) All candidates applied the initial condition to their solution in part (i).
- (b)(i) Almost all candidates recognised that the given differential equation required the application of the separation of variables method. This led directly to a solution for y^{-1} . A common error when inverting their expression to find y was to invert term by term, rather than treating the expression as a whole.
- (ii) Candidates who found the maximum value of y by differentiation usually scored full marks. Those candidates who attempted to argue the result based on the possible values of the sin x that was present in the denominator of a fraction often produced incomplete solutions. A convincing explanation of how the maximum value of $\sin x$ led to the maximum value of y was required.

(c) Almost all candidates rearranged the given differential equation into the form required to apply Euler's method and many scored full marks. A minority of the candidates gave a list of numbers, none of which related to the correct ones, and it was not possible to award any marks. Sight of either 0.5403 or 0.537(2) or equivalent was required as evidence that the method was being applied correctly.

Question No. 3

First order differential equations

This was the least popular choice of question, but the candidates who opted for it almost always scored the majority of the marks.

- (i) This was a straightforward application of Newton's second law.
- (ii) This part required the application of the method of separation of variables resulting in a logarithmic expression involving v. The majority of the candidates worked accurately and found the given expression for v^2 in terms of x.
- (iii) Most candidates produced a correct sketch showing an increasing curve from the origin to a horizontal asymptote. The second mark was awarded for identifying the value of *y* corresponding to the asymptote.
- (iv) This was a simple numerical substitution from given information.
- (v) Most candidates were able to write down a correct differential equation obtained by applying Newton's second law. This differential equation could be solved by separating the variables, by using an integrating factor or by finding a complementary function and a particular integral. The latter was the most elegant approach and gave an expression for v in terms of t, without any further rearrangement being required. Most candidates separated the variables and errors often appeared in the subsequent algebraic manipulation.
- (vi) Most candidates integrated their answer to part (v), but many did not include a constant of integration.

Question No. 4

Simultaneous second order linear differential equations

- (i) There were many excellent responses to this part and the majority of the candidates scored full marks. There were occasional numerical slips when finding the coefficients in the particular integral.
- (ii) Almost all candidates gained the two method marks and the majority also gained the accuracy mark.
- (iii) All candidates made a good attempt at this part and most produced accurate solutions.
- (iv) Most candidates realised that they needed to equate their expressions for x and y. Those candidates who had worked accurately up to this point were able to simplify their expression to the trigonometric equation $\cos 2t = \sin t$. Solving this equation posed very few problems. Candidates who had been inaccurate in the earlier parts of the question were not usually able to solve the equation that they obtained by equating their expressions for x and y.

GCE Mathematics (MEI)

MIS				Max Mark	а	b	С	d	е	u
1753 1 1753 1 1755 1	4751	01 C1 – MEI Introduction to advanced mathematics (AS)								0
1733	4752	01 C2 – MEI Concepts for advanced mathematics (AS)								0 0
4753 20 CG3) MEI Methods for Advanced Mathematics with Coursework Mark Raw 18 15 13 11 9 8 18 18 15 13 11 9 8 18 18 18 18 18	4753	01 1 1 1		72	58	52	47	42	36	0
4753 82 CC3) MEI Methods for Advanced Mathematics with Coursework: Carried Forward Coursework Mark UMS 100 80 70 60 50 40 40 4754 UMS 100 80 70 60 50 40 4754 UMS 100 80 70 60 50 40 4755 UMS 100 80 70 60 50 40 4756 UMS 100 80 70 60 50 40 4758 UMS	4753	(C3) MEI Methods for Advanced Mathematics with	Raw	18	15	13	11	9	8	0
MS	4753	(C3) MEI Methods for Advanced Mathematics with	Raw	18	15	13	11	9	8	0
Month March Marc			UMS	100	80	70	60		40	0
AFS 1	4754	01 C4 – MEI Applications of advanced mathematics (A2)								0
4756	4755	(1)	Raw	72	59	53	48	43	38	0
April Apri			UMS	100	80	70	60	50	40	0
4757	4756			72	60	54	48	43	38	0
A		FDQ MFI Further emplications of advanced mathematics	UMS	100	80	70	60	50	40	0
1	4757		Raw	72	60	54	49	44	39	0
Ar58			UMS	100	80	70	60	50	40	0
A758 82 Coursework Raw 18 15 13 11 9 8	4758	Paper	Raw	72	67	61	55	49	43	0
Forward Coursework Mark UMS 100 80 70 60 50 40 4761 111 111 4762 111 4762 111 4762 111 4763 101 112 4763 101 103 104 4763 101 103 104 4763 101 103 104 4764 101 104 4764 101 104 4764 101 104 4764 101 104 4766 101 104 4766 101 101 101 101 101 101 101	4758	Coursework	Raw	18	15	13	11	9	8	0
4761	4758		Raw	18	15	13	11	9	8	0
MS										0
MS 100 80 70 60 50 40 40 4763 01 M3 - MEI Mechanics 3 (A2) Raw 72 60 53 46 40 34 40 4764 01 M4 - MEI Mechanics 4 (A2) Raw 72 55 48 41 34 27 4766 01 S1 - MEI Statistics 1 (AS) Raw 72 55 50 46 40 4766 01 S2 - MEI Statistics 2 (A2) Raw 72 60 55 50 40 4768 01 S3 - MEI Statistics 3 (A2) Raw 72 60 55 50 40 4769 01 S4 - MEI Statistics 4 (A2) Raw 72 60 55 50 40 4769 01 D1 - MEI Decision mathematics 1 (AS) Raw 72 60 50 40 4776 01 D2 - MEI Decision mathematics 2 (A2) Raw 72 60 50 40 4776 01 D2 - MEI Decision mathematics 2 (A2) Raw 72 60 50 40 4776 01 D2 - MEI Decision mathematics 2 (A2) Raw 72 55 50 45 40 4776 4776 01 D2 - MEI Decision mathematics 2 (A2) Raw 72 55 50 45 40 4776 4776 01 DC - MEI Decision mathematics computation (A2) Raw 72 55 49 44 39 33 4776 4776 01 MEI Numerical Methods with Coursework: Written Paper Raw 72 72 75 75 75 75 75 75	4761	01 M1 – MEI Mechanics 1 (AS)								0
MS 100 80 70 60 50 40 40 4764 101 M4 - MEI Mechanics 4 (A2) Raw 72 55 48 41 34 27 4766 101 S1 - MEI Statistics 1 (AS) Raw 72 59 52 46 40 34 4767 4767 4767 4768 4769 4760	4762	01 M2 – MEI Mechanics 2 (A2)								0 0
A764 01 M4 - MEI Mechanics 4 (A2)	4763	01 M3 – MEI Mechanics 3 (A2)								0 0
4766 01 S1 - MEI Statistics 1 (AS) Raw UMS 72 S9 52 46 40 34 40 40 40 40 40 40 40 40 40 40 40 40 40	4764	01 M4 - MEI Mechanics 4 (A2)		72		48			27	0
4767 01 S2 - MEI Statistics 2 (A2) Raw UMS 72 60 55 50 45 40 0 4768 01 S3 - MEI Statistics 3 (A2) Raw 72 60 54 48 42 37 0 4769 01 S4 - MEI Statistics 4 (A2) Raw 72 56 49 42 35 28 0 4771 01 D1 - MEI Decision mathematics 1 (AS) Raw 72 48 43 38 34 30 0 4772 01 D2 - MEI Decision mathematics 2 (A2) Raw 72 55 50 45 40 36 0 4773 01 DC - MEI Decision mathematics computation (A2) Raw 72 55 50 45 40 36 0 4776 01 (NM) MEI Numerical Methods with Coursework: Written Paper Raw 72 55 49 44 39 33 0 4776 02 (NM) MEI Numerical Methods with Coursework: Coursework Mark Raw 18 14 12 10 8 7 0 4777 01 NC - MEI Numerical Computation (A2) Raw 72 55 47 39 32 25 0 4777 01 NC - MEI Numerical computation (A2) Raw 72 55 47 39 32 25 0 4777 01 NC - MEI Numerical computation (A2) Raw 72 55 47 39 32 25 0 4777 01 NC - MEI Numerical computation (A2) Raw 72 55 47 39 32 25 0 4777 01 NC - MEI Numerical computation (A2) Raw 72 55 47 39 32 25 0	4766	01 S1 – MEI Statistics 1 (AS)	Raw	72	59	52	46	40	34	0
MS 100 80 70 60 50 40 4768 101 S3 - MEI Statistics 3 (A2) Raw 72 60 54 48 42 37 4769 01 S4 - MEI Statistics 4 (A2) Raw 72 56 49 42 35 28 4771 01 D1 - MEI Decision mathematics 1 (AS) Raw 72 48 43 38 34 30 4772 48 43 38 34 30 4772 4772 01 D2 - MEI Decision mathematics 2 (A2) Raw 72 55 50 45 40 36 4773 01 DC - MEI Decision mathematics computation (A2) Raw 72 46 40 34 29 24 4773 4773 01 DC - MEI Decision mathematics computation (A2) Raw 72 46 40 34 29 24 4774 4775 4776 Available of the state of t	4767	01 S2 – MEI Statistics 2 (A2)								0
UMS 100 80 70 60 50 40 4769 4769 01 S4 - MEI Statistics 4 (A2) Raw 72 56 49 42 35 28 4771 01 D1 - MEI Decision mathematics 1 (AS) Raw 72 48 43 38 34 30 4772 48 43 38 34 30 4772 48 48 48 48 48 48 48 4						70	60	50		0
UMS 100 80 70 60 50 40 60 4771 01 D1 - MEI Decision mathematics 1 (AS) Raw 72 48 43 38 34 30 60 40 60 4772 01 D2 - MEI Decision mathematics 2 (A2) Raw 72 55 50 45 40 36 60 4773 01 DC - MEI Decision mathematics computation (A2) Raw 72 46 40 34 29 24 64 64 64 64 64 64 64	4768	01 S3 – MEI Statistics 3 (A2)								0
4771 01 D1 – MEI Decision mathematics 1 (AS) Raw 72 UMS 100 80 70 60 50 40 0 4772 01 D2 – MEI Decision mathematics 2 (A2) Raw 72 55 50 45 40 36 0 4773 01 DC – MEI Decision mathematics computation (A2) Raw 72 46 40 34 29 24 0 4776 01 (NM) MEI Numerical Methods with Coursework: Written Paper Raw 72 55 49 44 39 33 0 4776 02 (NM) MEI Numerical Methods with Coursework: Coursework (NM) MEI Numerical Methods with Coursework: Raw 18 14 12 10 8 7 0 4776 82 (NM) MEI Numerical Methods with Coursework: Carried Forward Coursework Mark (NM) MEI Numerical Methods with Coursework: Carried Forward Coursework Mark (NM) MEI Numerical Methods with Coursework: Carried Forward Coursework Mark (NM) MEI Numerical Computation (A2) (NM) ME	4769	01 S4 - MEI Statistics 4 (A2)								0 0
4772 01 D2 – MEI Decision mathematics 2 (A2) Raw 72 55 50 45 40 36 UMS 100 80 70 60 50 40 4773 01 DC – MEI Decision mathematics computation (A2) Raw 72 46 40 34 29 24 UMS 100 80 70 60 50 40 4776 01 (NM) MEI Numerical Methods with Coursework: Written Paper Raw 72 55 49 44 39 33 4776 02 (NM) MEI Numerical Methods with Coursework: Coursework Raw 18 14 12 10 8 7 4776 82 (NM) MEI Numerical Methods with Coursework: Carried Forward Coursework Mark Raw 18 14 12 10 8 7 4777 01 NC – MEI Numerical computation (A2) Raw 72 55 47 39 32 25 00 40	4771	01 D1 - MEI Decision mathematics 1 (AS)	Raw	72	48	43	38	34	30	0
UMS 100 80 70 60 50 40 60 60 50 40 60 60 60 60 60 60 6	4772	01 D2 – MEI Decision mathematics 2 (A2)								0
4776 01 (NM) MEI Numerical Methods with Coursework: Written Paper (NM) MEI Numerical Methods with Coursework: Raw 72 55 49 44 39 33 (Coursework (NM) MEI Numerical Methods with Coursework: Raw 18 14 12 10 8 7 (Coursework (NM) MEI Numerical Methods with Coursework: Carried Forward Coursework Mark (NM) MEI Numerical Methods with Coursework: Carried Naw 18 14 12 10 8 7 (Coursework Mark (NM) MEI Numerical Methods with Coursework: Carried Naw 18 14 12 10 8 7 (Coursework Mark (NM) MEI Numerical Methods with Coursework: Carried Naw 18 14 12 10 8 7 (Coursework Mark (NM) MEI Numerical Methods with Coursework: Carried Naw 18 14 12 10 8 7 (Coursework Mark (NM) MEI Numerical Methods with Coursework: Carried Naw 18 14 12 10 8 7 (Coursework Mark (NM) MEI Numerical Methods with Coursework: Carried Naw 18 14 12 10 8 7 (Coursework Mark (NM) MEI Numerical Methods with Coursework: Carried Naw 18 14 12 10 8 7 (Coursework Mark (NM) MEI Numerical Methods with Coursework: Carried Naw 18 14 12 10 8 7 (Coursework Mark (NM) MEI Numerical Methods with Coursework: Carried Naw 18 14 12 10 8 7 (Coursework Mark (NM) MEI Numerical Methods with Coursework: Carried Naw 18 18 14 12 10 8 7 (Coursework Mark (NM) MEI Numerical Methods with Coursework: Carried Naw 18 18 14 12 10 8 7 (Coursework Mark (NM) MEI Numerical Methods with Coursework: Carried Naw 18 18 14 12 10 8 7 (Coursework Mark (NM) MEI Numerical Methods with Coursework: Carried Naw 18 18 14 12 10 8 7 (Coursework Mark (NM) MEI Numerical Methods with Coursework: Carried Naw 18 (NM) MEI Numerical Methods with Coursework: Carried Naw 18 (NM) MEI Numerical Methods with Coursework: Carried Naw 18 (NM) MEI Numerical Methods with Coursework: Carried Naw 18 (NM) MEI Numerical Methods with Coursework: Carried Naw 18 (NM) MEI Numerical Methods with Coursework: Carried Naw 18 (NM) MEI Numerical Methods with Coursework: Carried Naw 18 (NM) MEI Numerical Methods with Coursework: Carried Naw 18 (NM) MEI Numerical Methods with Coursework: Carried Naw 18 (NM) MEI Numerical Methods with Coursework: Carrie		or be mer book or manomanoe e (re)								0
4776 01 Paper 4776 02 (NM) MEI Numerical Methods with Coursework: 4776 82 (NM) MEI Numerical Methods with Coursework: Carried Forward Coursework Mark 4777 01 NC - MEI Numerical computation (A2) Raw 72 55 49 44 39 33 (A2) A3 (A3) A3 (A3) A3 (A3) A4 A3 (A3) A3 (A3) A4 (A3) A3 (A3) A4 (A3) A3 (A3) A4 (A3) A4 (A3) A4 (A4) A4 (4773	01 DC – MEI Decision mathematics computation (A2)								0 0
4776 02 (NM) MEI Numerical Methods with Coursework: 4776 82 (NM) MEI Numerical Methods with Coursework: Carried Forward Coursework Mark UMS 100 80 70 60 50 40 00 40 70 60 50 40 00 80 70 60 50 40 80 70 60 50 80 70 60 50 80 80 70 60 50 80 80 70 60 50 80 80 80 80 80 80 80 80 80 80 80 80 80	4776	01 .			55					0
4776 82 (NM) MEI Numerical Methods with Coursework: Carried Forward Coursework Mark UMS 100 80 70 60 50 40 0 4777 01 NC - MEI Numerical computation (A2) Raw 72 55 47 39 32 25 0 UMS 100 80 70 60 50 40 0	4776	(NM) MEI Numerical Methods with Coursework:	Raw	18	14	12	10	8	7	0
UMS 100 80 70 60 50 40 0 4777 01 NC – MEI Numerical computation (A2) Raw 72 55 47 39 32 25 0 UMS 100 80 70 60 50 40 0	4776	82 (NM) MEI Numerical Methods with Coursework: Carried	Raw	18	14	12	10	8	7	0
UMS 100 80 70 60 50 40 (UMS	100	80	70	60	50	40	0
4798 01 FPT - Further pure mathematics with technology (A2) Raw 72 57 49 41 33 26	4777	01 NC – MEI Numerical computation (A2)								0
	4798	01 FPT - Further pure mathematics with technology (A2)								0

Oxford Cambridge and RSA		UMS	100	80	70	60	50	40	0
GCE Stati	stics (MEI)								
			Max Mark	а	b	С	d	е	u
G241	01 Statistics 1 MEI (Z1)	Raw UMS	72 100	59 80	52 70	46 60	40 50	34 40	0 0
G242	01 Statistics 2 MEI (Z2)	Raw UMS	72 100	55 80	48 70	41 60	34 50	27 40	0 0
G243	01 Statistics 3 MEI (Z3)	Raw UMS	72 100	56 80	48 70	41 60	34 50	27 40	0 0
GCE Quar	ntitative Methods (MEI)								
			Max Mark	а	b	С	d	е	u
G244	01 Introduction to Quantitative Methods MEI	Raw	72	58	50	43	36	28	0
G244	02 Introduction to Quantitative Methods MEI	Raw	18	14	12	10	8	7	0
		UMS	100	80	70	60	50	40	0
G245	01 Statistics 1 MEI	Raw UMS	72 100	59 80	52 70	46 60	40 50	34 40	0 0
G246	01 Decision 1 MEI	Raw UMS	72 100	48 80	43 70	38 60	34	30	0

Level 3 Certificate and FSMQ raw mark grade boundaries June 2016 series

For more information about results and grade calculations, see www.ocr.org.uk/ocr-for/learners-and-parents/getting-your-results

Level 3 Ce	ertificate Mathematics for Engineering									
			Max Mark	a*	а	b	С	d	е	
H860	01 Mathematics for Engineering		This unit	has no	entries	s in Ju	ne 20	16		
H860	02 Mathematics for Engineering		THIS UNIT	1103 110	CHILIC	3 111 Ju	110 20	10		
Level 3 Ce	ertificate Mathematical Techniques and Applications for Engineers	5								
			Max Mark	a*	а	b	С	d	е	
H865	01 Component 1	Raw	60	48	42	36	30	24	18	
Level 3 Ce	ertificate Mathematics - Quantitative Reasoning (MEI) (GQ Reform)									
			Max Mark	а	b	С	d	е	u	
H866	01 Introduction to quantitative reasoning	Raw	72	55	47	39	31	23	0	
H866	02 Critical maths	Raw	60	47	41	35	29	23	0	
		Overall	132	111	96	81	66	51	0	
Level 3 Ce	ertificate Mathematics - Quantitive Problem Solving (MEI) (GQ Ref	orm)								
	3, ,,,	,	Max Mark	а	b	С	d	е	u	
H867	01 Introduction to quantitative reasoning	Raw	72	55	47	39	31	23	0	
H867	02 Statistical problem solving	Raw	60	40	34	28	23	18	0	
		Overall	132	103	88	73	59	45	0	
Advanced	Free Standing Mathematics Qualification (FSMQ)									
			Max Mark	а	b	С	d	е	u	
6993	01 Additional Mathematics	Raw	100	59	51	44	37	30	0	
Intormodia	oto Free Standing Mathematics Qualification (FSMQ)									
memedia	ate Free Standing Mathematics Qualification (FSMQ)		Max Mark	а	b	С	d	е	u	
6989	01 Foundations of Advanced Mathematics (MEI)	Raw	40	35	30	25	20	16	0	
0000	or roundations of Advanced Mathematics (MLI)	rtuw	10	50		0	0	, 0		

Version	Details of change
1.1	Correction to Overall grade boundaries for H866
1.1	Correction to Overall grade boundaries for H867

Published: 17 August 2016 Version 1.1 2